class: center, middle ##
What are - amongst many - the objectives of
nuclear physics?
(I) Spectra:
Relative
stability
of
composites
of neutrons and protons
---
(II) Reactions:
Response of nuclear
composites
to their like and unlike
\(^4\text{He}\left(\gamma,p\right)^3\text{H}\)
photo dissociation cross sections
---
Appropriate
theory for low-energy processes:
degrees of freedom: neutrons and protons
("What do we measure?")
symmetry: Galilei \(\approx\) low-energy Lorentz
(translational and rotationally invariant
potentials
)
particle statistics and identity: quantum mechanics
\(\Rightarrow i\partial_t\Psi(\tilde{r}_1,\ldots,\tilde{r}_A)=\hat{H}\Psi(\tilde{r}_1,\ldots,\tilde{r}_A)\)
with \(\hat{H}=-\frac{\hbar^2}{2}\sum\limits_i\frac{\vec{\nabla}^2}{m_i}+\sum\limits_{i,j}v_{ij}+\sum\limits_{i,j,k}v_{ijk}\)
Example:
\begin{eqnarray} v_{ij}&=&\sum\limits_na_n\frac{e^{-n\mu r_{ij}}}{\mu r_{ij}}+\sum\limits_nc_n\frac{e^{-n\mu r_{ij}}}{\mu r_{ij}}\vec{L}\cdot\vec{S}\\ &&+\left\lbrace\frac{b_1}{\mu r_{ij}}\left[\left(\frac{1}{3}+\frac{1}{\mu r_{ij}}+\frac{1}{(\mu r_{ij})^2}\right)e^{-\mu r_{ij}}-\left(\frac{b_0}{\mu r_{ij}}+\frac{1}{(\mu r_{ij})^2}\right)e^{-b_0\mu r_{ij}}\right]+\sum\limits_nb_n\frac{e^{-n\mu r_{ij}}}{\mu r_{ij}}\right\rbrace \left[3\left(\vec{\sigma}_1\cdot\hat{\vec{r}}\right)\left(\vec{\sigma}_2\cdot\hat{\vec{r}}\right)-\vec{\sigma}_1\cdot\vec{\sigma}_2\right] \end{eqnarray}
But how can we
derive
this from a
fundamental
theory?
relativistic quantum field theory
\(\to\)
non-relativistic dynamics
(Schrödinger, Lippmann-Schwinger)
\(\oplus\) few-body potentials
Understand the dynamical equation as a
wave equation
resulting from a Lagrangean/Hamiltonian density:
\(\mathcal{L}_0=\frac{i}{2}\Psi^*\partial_t\Psi-\frac{i}{2}\Psi\partial_t\Psi^*-\frac{\left(\nabla\Psi^*\right)\left(\nabla\Psi\right)}{2m}\)
where the
field
\(\Psi(\vec{x},t)\) replaces the position \(\vec{x}(t)\) as the fundamental degree of freedom and
\(\left[\Psi(\vec{x},t),\Psi^*(\vec{x}',t)\right]=\delta(\vec{x}-\vec{x}')\)
---
---
---
---
---
The front:
Renormalized form of an \(A\)-body contact theory
.
Challenges:
Analytical guidance (Faddeev/Yakubovsky style)
Accurate numerics
Efficient numerics
The appropriate expansion point (more in
Improved-action approach
)