February 25, 2025
∅td's (NFL '13)\(\approx 2.8\) ∅goals (UK '13)\(\approx 2.8\) ∅tries (AUS '13)\(\approx 5.7\)
\(\approx 410(15)\)g \(\approx 430(20)\)g \(\approx 430(25)\)g
\[a_{\text{dimer-dimer}}/a_{\text{atom-atom}}\approx0.6\] D.S. Petrov, C. Salomon, and G.V. Shlyapnikov (2003)
\[\sigma_{\text{max}}(t+d\to n+\alpha)\approx5000\,\text{mb}\] Reaction-enhancement mechanism?
i.e. identical-fermion swap between di-neutron states \(\big|i,j,m,n\big\rangle\)
\( \zeta\begin{pmatrix}i&m\\j&n\end{pmatrix}= \int d^3(x_1,x_2,x_{1'},x_{2'}) \big\langle i\big\vert x_{1},x_{2'}\big\rangle \big\langle j\big\vert x_{1'},x_{2}\big\rangle \big\langle x_{1'},x_{2'}\big\vert n\big\rangle \big\langle x_{1},x_{2}\big\vert m\big\rangle \)
di-neutron m contains the same neutron as di-neutron i, e.g., \(|\uparrow\,\rangle\)
\begin{align} \Psi(E)&=C+C^2\cdot \color{dodgerblue}{L_1(E)}+C^3\cdot \color{dodgerblue}{L_2(E)}+\ldots \\ &=C(\lambda)+C(\lambda)^2\cdot L_{1,\lambda}(E)+C(\lambda)^3\cdot L_{2,\lambda}(E)+\ldots \\ &\stackrel{!}{"="}\color{tomato}{B_{\text{exp}}}=\frac{\langle\Psi\vert\hat{H}\vert\Psi\rangle}{\langle\Psi\vert\Psi\rangle} \end{align}
\(a_2\to\infty\) i.e. no 2-body scale
\begin{align*} \Psi=\hat{\mathcal{A}}\;{\Bigg\lbrace}& \sum\limits_i\phi(A_i)\phi(B_i)F_i(\mathbf{R}_i) + \sum\limits_j\phi(A_j)\phi(B_j)\phi(C_j)F_j(\mathbf{R}_{1j},\mathbf{R}_{2j})\\ &+\ldots+\sum\limits_mc_m\chi_m\Bigg\rbrace\; Z(\mathbf{R}_{\text c.m.}) \end{align*}
\(\hat{H}\phi^{(n)}_A=e_A^{(n)}\phi^{(n)}_A\)
\(\delta\Psi\stackrel{!}{=}\delta F_i\)
\begin{gather*} \left(\hat{T}_{\mathbf{R}}-E_\text{rel}+\mathbb{N}^{-1}\langle\phi_A\phi_B\vert\hat{V}\vert\phi_A\phi_B\rangle\right)\chi(\mathbf{R})\\ -\mathbb{N}^{-1}\int d\mathbf{R}'\left[\langle\phi_A\phi_B\vert\left(\hat{T}_{\mathbf{R}}-E_\text{rel}+ \hat{V}\right)\hat{A}\left\lbrace\vert\phi_A\phi_B\rangle\delta(\mathbf{R}-\mathbf{R}')\right\rbrace\right]\chi(\mathbf{R}')=0 \end{gather*}
\begin{gather*} \sum_{n=1}^{N_{\text{loc}}}\hat{\eta}_n~e^{-w_n\mathbf{R}^2}\chi(\mathbf{R})- \sum_{n=1}^{N_{\text{n-loc}}}\int\left\lbrace\hat{\zeta}_n\,e^{-a_n\mathbf{R}^2-b_n\mathbf{R}\cdot\mathbf{R}'-c_n\mathbf{R}'^2}\right\rbrace\chi(\mathbf{R}') d\mathbf{R}'=0\\ \color{dodgerblue}{\text{with$\;\;\;\hat{\eta}_n,\hat{\zeta}_n,w_n,a_n,b_n,c_n\;\;\;\text{dependent upon}\;\;\;C_{nn}(\lambda),C_{nnn}(\lambda),\color{red}{\alpha(\lambda)},E_{\text{rel}},A,B$}} \end{gather*}