Quantized Harmonic Oscillators & the Electromagnetic Field:

E& B radiation fields in an empty cavity
with conducting walls:
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wave equation:

Ecce: Mode functions follow from cavity
1 geometry as solutions to:
VPE - SO7E=0
c
V2upm(x) = —k2um(x)
Idea: Mode-function representation: V- um(x) =0
A X um(x) =0 (on cavity surface)

E(x,t) = fm(t)um(x)



E&B as a collection of oscillators:

separate, mode-specific total field energy: total energy of an infinite
wave equation: set of harmonic oscillators:
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= l|dentification: Qm <« Mf"#

Each basis-field configuration (mode) is formally equivalent
to a classical, 1-dimensional oscillator with a characteristic frequency.



Quantization of a set of oscillators = Quantization of the E&B field

Transformation to occupation-number coordinates:
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Canonical quantization
(Qm, Pl = i0mnhi = [ahan] = omn
obtains the electric E(x,t) = > 2rhwm {aL(t) + am(t)} um(x)

and magnetic field operator B(x,t) = icy/ ZJ—h {ajn(t) - am(t)} V X um(x)



real effect of the OO zero-point energy:

L —  Casimir force
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E& B cavity energy with inserted wall:
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Large volumes:
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Ecce: For a rectangular cavity
A; cos(kix) sin(kay) sin(ksz)
u(x) Az sin(kix) cos(kzy) sin(ksz)
A3 sin(kix) sin(kay) cos(ksz)

with k; = 2% and
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Physical significance:
cavity walls are conducting
nly for certain fr ncies! .. .
only for certa equencies renormalization and the Casimir force
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And the Casimir force per unit area of the plates is:
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Ponderables:

-

Derive the wave equation from Maxwell’'s equations in free space.

Mode expand the magnetic field and obtain a mode-specific
equation for the coefficients hp,(t).

Above, we identified the electric mode coefficients f,, with

coordinates via p

_m
2wm/T

. . . . . hm .
With the alternative identification Q,, TV derive the

Qm <>

expansion of the electric field in terms of aIn and ap,.




