
Quantized Harmonic Oscillators & the Electromagnetic Field:

E&B radiation fields in an empty cavity
with conducting walls:
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1
c
∂tB
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∂tE

∇ · E = 0
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⇓

wave equation:
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c2 ∂
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Idea: Mode-function representation:

E(x , t) =
∑
m

fm(t)um(x)

Ecce: Mode functions follow from cavity
geometry as solutions to:

∇2um(x) = −k2
mum(x)

∇ · um(x) = 0

n̂ × um(x) = 0 (on cavity surface)

(see cavity example below)



E&B as a collection of oscillators:

separate, mode-specific
wave equation:
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total field energy:
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total energy of an infinite
set of harmonic oscillators:
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∑
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m Q2
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⇒ Identification: Qm ↔ fm
2ωm

√
π

Each basis-field configuration (mode) is formally equivalent
to a classical, 1-dimensional oscillator with a characteristic frequency.



Quantization of a set of oscillators = Quantization of the E&B field

Transformation to occupation-number coordinates:

(position) Qm =

√
ℏ
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(a†m + am)

(momentum) Pm =
dQm

dt
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2
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⇒ H =
∑
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(
a†mam +

1
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)

Canonical quantization

[Qm,Pn] = i δmn ℏ ⇒
[
a†m, an

]
= δmn ℏ

obtains the electric E(x , t) =
∑
m

√
2πℏωm

{
a†m(t) + am(t)

}
um(x)

and magnetic field operator B(x , t) =
∑
m
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{
a†m(t)− am(t)

}
∇× um(x)



real effect of the ∞ zero-point energy: 2
volume

∑
k

ℏωk
2 → Casimir force

E&B cavity energy with inserted wall:

∆H = HR + HL−R − HL

Large volumes: 2
vol
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but:
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Ecce: For a rectangular cavity

u(x) =

A1 cos(k1x) sin(k2y) sin(k3z)
A2 sin(k1x) cos(k2y) sin(k3z)
A3 sin(k1x) sin(k2y) cos(k3z)


with ki =

niπ
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3



renormalization and the Casimir force

cut off divergent
∑
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∫
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)
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)
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And the Casimir force per unit area of the plates is:

FCasimir = −
1
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∂∆H

∂R
= −

ℏc
240

π2

R4

Physical significance:
cavity walls are conducting
only for certain frequencies!



Ponderables:
י! Derive the wave equation from Maxwell’s equations in free space.

י! Mode expand the magnetic field and obtain a mode-specific
equation for the coefficients hm(t).

י! Above, we identified the electric mode coefficients fm with
coordinates via

Qm ↔
fm

2ωm
√
π

.

With the alternative identification Qm ↔ hm
2c

√
π

derive the

expansion of the electric field in terms of a†m and am.


